Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dmitry V. Albov,* Victor B.
Rybakov, Eugene V. Babaev and Leonid A. Aslanov

Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation

Correspondence e-mail:
albov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.050$
$w R$ factor $=0.137$
Data-to-parameter ratio $=17.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved
\qquad

1-(4-Chlorophenacyl)-4-methyl-5,6,7,8,9,10-hexahydrocycloocta[b]pyridin-2(1H)-one

In the pyridone ring of the title compound, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClNO}_{2}$, single and double bonds alternate, though allowing some degree of delocalization. Two C atoms in the cyclooctene ring are disordered, indicating some flexibility of the large ring.

Comment

In the course of our systematic study of the size effect of cycloalkane fragments on the reactivity of pyridine-based heterocycles, we have previously described the crystal structure of 4-methyl-5,6,7,8,9,10-hexahydrocycloocta[b]pyridin$2(1 H)$-one, (1), (Albov, Mazina et al., 2004). Following our investigations of cycloheptene derivatives (Albov, Rybakov, Babaev, Fedyanin \& Aslanov, 2004; Albov, Rybakov, Babaev \& Aslanov, 2004), we have now synthesized the title compound, (3) (Fig. 1).

In the pyridone ring of (3), the single and double bonds alternate (Table 1), though allowing some degree of delocalization. Atoms C8 and C9 of the cyclooctene ring are disordered over two sites each, forming two conformations with occupancies of 0.719 (7) and 0.281 (7), respectively. The torsion angle $\mathrm{C} 21-\mathrm{C} 16-\mathrm{C} 15-\mathrm{O} 15$ is 25.6 (3) ${ }^{\circ}$, the same as in a related cycloheptene derivative (Albov, Rybakov, Babaev \& Aslanov, 2004). The dihedral angle between the benzene and pyridone rings is $57.96(8)^{\circ}$.

Experimental

For the preparation of 2-methoxy-4-methyl-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine, (2), compound (1) (8.30 g), methyl iodide $(7.78 \mathrm{~g})$ and silver carbonate $(6.00 \mathrm{~g})$ were boiled in 70 ml of benzene for 50 h . The reaction flask was protected against light. The mixture was then filtered and the solvent was evaporated (yield $5.04 \mathrm{~g}, 57 \%$). The product was recrystallized from chloroform (m.p. 313$314 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$, p.p.m.): $1.33\left(m, 2 \mathrm{H}, 8-\mathrm{CH}_{2}\right)$, $1.41\left(m, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 1.60\left(m, 2 \mathrm{H}, 7-\mathrm{CH}_{2}\right), 1.70\left(m, 2 \mathrm{H}, 6-\mathrm{CH}_{2}\right), 2.25$ $\left(s, 3 \mathrm{H}, 13-\mathrm{CH}_{3}\right), 2.71\left(t, 2 \mathrm{H}, 6-\mathrm{CH}_{2}\right), 2.80\left(t, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right), 3.60(s, 3 \mathrm{H}$, $\left.\mathrm{O}-\mathrm{CH}_{3}\right), 6.31(s, 1 \mathrm{H}, 3-\mathrm{CH})$. Atoms are numbered as in the title compound (Fig. 1).

Received 8 June 2004 Accepted 11 June 2004 Online 26 June 2004

Figure 1
ORTEP-3 view (Farrugia, 1997) of (3), with the atom-numbering scheme. Atomic displacement ellipsoids are drawn at the 50% probability level. Only the major components of disordered atoms C 8 and C 9 , namely $\mathrm{C} 8 A$ and C9 A, are shown.

For the preparation of 1-(4-chlorophenacyl)-4-methyl-5,6,7,8,9,10hexahydrocycloocta $[b]$ pyridin- $2(1 \mathrm{H})$ - one, (3), compound (2) (5.00 g) and 4-chlorophenacyl bromide (5.70 g) were boiled in acetonitrile for 6 h . When thin-layer chromatography showed only traces of source compounds in the solution, the solvent was evaporated and the product was washed with acetone (yield $3.54 \mathrm{~g}, 42 \%$). The product was recrystallized from acetone (m.p. 453-455 K). ${ }^{1} \mathrm{H}$ NMR (DMSO$d_{6}, 400 \mathrm{MHz}$, p.p.m.): $1.45\left(m, 4 \mathrm{H}, 8-\mathrm{CH}_{2}+9-\mathrm{CH}_{2}\right), 1.62(m, 4 \mathrm{H}, 7-$ $\left.\mathrm{CH}_{2}+10-\mathrm{CH}_{2}\right), 1.70\left(m, 2 \mathrm{H}, 6-\mathrm{CH}_{2}\right), 2.20\left(s, 3 \mathrm{H}, 13-\mathrm{CH}_{3}\right), 2.63(t, 2 \mathrm{H}$, $\left.6-\mathrm{CH}_{2}\right), 2.70\left(t, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right), 5.45\left(s, 2 \mathrm{H}, 14-\mathrm{CH}_{2}\right), 6.13(s, 1 \mathrm{H}, 3-\mathrm{CH})$, $7.53,8.08(d d, 4 \mathrm{H}, \mathrm{Ar})$. Atom numbering as in Fig. 1.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClNO}_{2}$
$M_{r}=343.84$
Triclinic, $P \overline{1}$
$a=8.239$ (3) Å
$b=9.115(3) \AA$
$c=12.42$ (1) \AA
$\alpha=111.20(4)^{\circ}$
$\beta=93.80(4)^{\circ}$
$\gamma=96.76(3)^{\circ}$
$V=857.6(9) \AA^{3}$

Data collection

Enraf-Nonius CAD-4 diffractometer Non-profiled ω scans Absorption correction: none 4125 measured reflections 4125 independent reflections 2645 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.332 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

$$
\text { Cell parameters from } 25
$$

reflections

$$
\theta=13-15^{\circ}
$$

$$
\mu=0.24 \mathrm{~mm}^{-1}
$$

$T=293$ (2) K
Prism, colourless
$0.22 \times 0.20 \times 0.18 \mathrm{~mm}$

$$
\theta_{\max }=28.0^{\circ}
$$

$$
h=-10 \rightarrow 10
$$

$$
k=-12 \rightarrow 11
$$

$$
l=0 \rightarrow 16
$$

1 standard reflection every 200 reflections intensity decay: 3%

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0608 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$	$+0.1283 P]$
$w R\left(F^{2}\right)=0.137$	where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$S=1.05$	$(\Delta / \sigma)_{\max }=0.001$
4125 reflections	$\Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3}$
237 parameters	$\Delta \rho_{\min }=-0.42 \mathrm{e} \AA^{-3}$
H-atom parameters constrained	

H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

C11-C19	1.737 (2)	$\mathrm{C} 9 A-\mathrm{C} 10$	1.510 (4)
N1-C12	1.392 (2)	C8B-C9B	1.48 (2)
N1-C2	1.396 (3)	$\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 10$	1.641 (10)
N1-C14	1.462 (2)	C10-C11	1.527 (3)
C2-O2	1.242 (2)	C11-C12	1.507 (3)
C2-C3	1.418 (3)	C14-C15	1.508 (3)
C3-C4	1.352 (3)	C15-O15	1.217 (2)
C4-C5	1.425 (3)	C15-C16	1.490 (3)
C4-C13	1.509 (3)	C16-C21	1.386 (2)
C5-C12	1.368 (3)	C16-C17	1.386 (2)
C5-C6	1.514 (3)	C17-C18	1.383 (2)
C6-C7	1.532 (4)	C18-C19	1.379 (3)
C7-C8B	1.403 (15)	C19-C20	1.376 (2)
C7-C8A	1.560 (6)	C20-C21	1.380 (2)
C 8 - C 9 A	1.536 (8)		
C12-N1-C2	122.83 (16)	$\mathrm{C} 98-\mathrm{C} 8$ - 77	113.6 (4)
C12-N1-C14	122.10 (16)	$\mathrm{C} 10-\mathrm{C} 9 A-\mathrm{C} 8 A$	114.3 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 14$	114.93 (16)	$\mathrm{C} 7-\mathrm{C} 8 B-\mathrm{C} 9 B$	118.7 (10)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 1$	119.92 (19)	C 8 - C 9 - -C 10	111.3 (8)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	124.9 (2)	C9A-C10-C11	117.0 (2)
N1-C2-C3	115.15 (18)	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9 B$	111.8 (3)
C4-C3-C2	123.5 (2)	C12-C11-C10	117.23 (18)
C3-C4-C5	119.16 (18)	C5-C12-N1	119.85 (17)
C3-C4-C13	119.9 (2)	C5-C12-C11	122.01 (18)
C5-C4-C13	120.9 (2)	N1-C12-C11	118.14 (16)
C12-C5-C4	119.43 (18)	N1-C14-C15	112.31 (15)
C4-C5-C6	119.96 (18)	O15-C15-C16	121.25 (16)
C5-C6-C7	113.53 (18)	O15-C15-C14	120.99 (16)
C8B-C7-C6	111.3 (5)	C16-C15-C14	117.76 (15)
C6-C7-C8A	115.6 (2)		

All H atoms were positioned geometrically and refined as riding $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$, with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}$ of the parent C atom.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (Allen, 2002) (project No. 02-07-90322).

References

Albov, D. V., Mazina, O. S., Rybakov, V. B., Babaev, E. V., Chernyshev, V. V. \& Aslanov, L. A. (2004). Crystallogr. Rep. 49, 158-168.
Albov, D. V., Rybakov, V. B., Babaev, E. V. \& Aslanov, L. A. (2004). Acta Cryst. E60, o894-o895.
Albov, D. V., Rybakov, V. B., Babaev, E. V., Fedyanin, I. V. \& Aslanov, L. A. (2004). Acta Cryst. E60, o892-o893.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

organic papers

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

